USN

Third Semester B.E. Degree Examination, Dec.09/Jan.10 **Network Analysis**

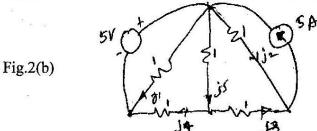
Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

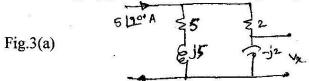
PART - A

Write the mesh equations for the circuit shown in Fig. 1 and solve for currents i₁, i₂ and i₃. (10 Marks)


Fig.1(a)

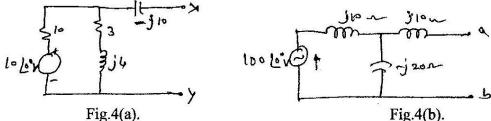
The node voltage equations of a network are

$$\left(\frac{1}{5} + \frac{1}{2}j + \frac{1}{4}\right) v_1 - \frac{1}{4} v_2 = \frac{50|0^{\circ}}{5} \text{ and } -\frac{1}{4} v_1 + \left(\frac{1}{4} - \frac{1}{j2} + \frac{1}{2}\right) v_2 = \frac{50|90^{\circ}}{2}. \text{ Derive the network.}$$


(10 Marks)

- Define the following terms with respect to the network topology. Give examples.
 - i) Tree; ii) Graph; iii) Sub graph; iv) Tieset; v) Cutset. (08 Marks)
 - b. For the network shown in Fig.2(b), write the graph and obtain the tieset schedule considering j₁, j₂, j₅ as tree branches. Also calculate all branch currents. (12 Marks)

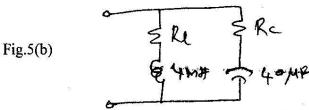
a. In the circuit shown in Fig.3(a), find v_x and prove reciprocity theorem.


(10 Marks)

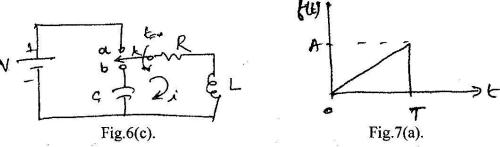
b. State and explain super position theorem with a suitable example.

(10 Marks)

Obtain the Thevenin's equivalent network for the circuit in Fig.4(a) between the terminals X and Y. (10 Marks)



What should be the value of pure resistive load to be connected across the terminals a and b in the network shown in Fig. 4(b), so that maximum power is transferred to the load? Calculate the maximum power. (10 Marks)

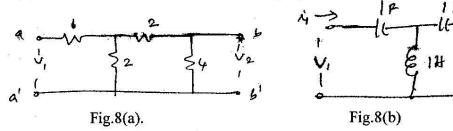

PART - B

- 5 a. Show that for a series RLC resonant circuit the selectivity $\varphi = \frac{f0}{f2 f1}$, where for resonate frequency f1 and f2 are half power frequency. (08 Marks)
 - b. Determine R_L and R_C for which the circuit shown in Fig.6 resonates at all frequencies.

(06 Marks)

- c. It is required that a series RLC circuit should resonate at 1 MHz. Determine values of R, L and C if bandwidth of the circuit is 5 kHz and its impedance is 50 Ω at resonance. (06 Marks)
- 6 a. Explain the importance of study of initial conditions in electric circuit analysis. (06 Marks)
 - b. Explain the behaviour of R, L and C elements for transients. Mention their representation at the instant of switching. (06 Marks)
 - c. In the circuit shown in Fig.6(c), the switch is moved from 'a' to 'b' at t = 0. Find the values of i, $\frac{di}{dt}$, $\frac{d^2i}{dt^2}$ at $t = 0^+$, if $R = 1 \Omega$, L = 1 H, $C = 0.1 \mu F$ and V = 100 V. Assume steady state is achieved when k is at 'a'. (08 Marks)

7 a. Obtain the Laplace transform of saw took waveform shown in Fig.7(a).


(06 Marks)

- b. Find the Laplace transform of i) δ (t); ii) t; iii) e^{-at} . (06 Marks)
- c. Find f(0) and $f(\infty)$ using initial value and final value theorem for the function given below.

 $F(s) = \frac{s^3 + 7s^2 + 5}{s(s^3 + 3s^2 + 4s + 2)}.$ (08 Marks)

8 a. Find y parameters for the network shown in Fig.8(a).

(08 Marks)

b. Determine the 'h' parameters for the network shown in Fig.8(b).

(08 Marks)

- c. Mention the application of
 - i) Transmission parameters; ii) 'h' parameters; iii) 'z' parameters. (04 Marks)